线性模型
作者:C.R.Rao/等 整理日期:2023-04-25 08:53:51
片断: Chapter5isdevotedtoestimationunderexactorstochasticlinearre- strictions.ThecomparisonoftwobiasedestimatorsaccordingtotheMDE criterionisbasedonrecenttheoremsofmatrixtheory.Theresultsarethe outcomeofintensiveinternationalresearchoverthelasttenyearsandap- pearhereforthefirsttimeinacoherentform.Thisconcernstheconcept oftheweakr-unbiasednessaswell. Chapter6containsthetheoryoftheoptimallinearpredictionand gives,inadditiontoknownresults,aninsightintorecentstudiesabout theMDEmatrixcomparisonofoptimalandclassicalpredictionsaccording toalternativesuperioritycriteria. Chapter7presentsideasandproceduresforstudyingtheeffectofsingle datarowsontheestimationof.Here,differentmeasuresforrevealing outliersorinfluentialpoints.includinggraphicalmethods,areincorporated. Someexamplesillustratethis. Chapter8dealswithmissingdatainthedesignmatrixX.Afterintroduc- ingthegeneralproblemsanddefiningthevariousmissingdatamechanisms accordingtoRubin,wedemonstrate''adjustmentbyfollow-upinterviews" forlong-termstudieswithdropout.Fortheregressionmodelthemethodof imputationisdescribed,inadditiontotheanalysisofthelossofefficiency incaseofareductiontothecompletelyobservedsubmodel.Themethod ofweightedmixedestimatesispresentedforthefirsttimeinatextbook onlinearmodels. Chapter9containsrecentcontributionstorobuststatisticalinference basedonM-estimation. Chapter10describesthemodelextensionsforcategoricalresponseand explanatoryvariables.Here.thebinaryresponseandtheloglinearmodelare ofspecialinterest.Themodelchoiceisdemonstratedbymeansofexamples. Categoricalregressionisintegratedintothetheoryofgeneralizedlinear models. Anindependentchapter(AppendixA)onmatrixalgebrasummarizes standardtheorems(includingproofs)thatareofinterestforthebookit- self,butalsoforlinearstatisticsingeneral.Ofspecialinterestarethe theoremsaboutdecompositionofmatrices(A.30-A.34),definitematrices (A.35-A.59),thegeneralizedinverse,andespeciallyaboutthedefiniteness ofdifferencesbetweenmatrices(TheoremA.7l;cf.A.74-A.78). Thebookoffersanup-to-dateandcomprehensiveaccountofthetheory andapplicationsoflinearmodels. TablesfortheX-and.F-distributionsareprovidedinAppendixB. 2 LinearModels 2.1RegressionModelsinEconometrics Themethodologyofregressionanalysis,oneoftheclassicaltechniquesof mathematicalstatistics,isanessentialpartofthemoderneconometric theory. Econometricscombineselementsofeconomics,mathematicaleconomics, andmathematicalstatistics.Thestatisticalmethodsusedineconometrics areorientedtowardspecificeconometricproblemsandhencearehighly specialized.Ineconomiclawsstochasticvariablesplayadistinctiverole. Henceeconometricmodels,adaptedtotheeconomicreality,havetobe builtonappropriatehypothesesaboutdistributionpropertiesoftheran- domvariables.Thespecificationofsuchhypothesesisoneofthemaintasks ofeconometricmodelling.Forthemodellingofaneconomic(orascientific) relation,weassumethatthisrelationhasarelativeconstancyoverasuffi- cientlylongperiodoftime(thatis,overasufficientlengthofobservation period),sinceotherwiseitsgeneralvaliditywouldnotbeascertainable. Wedistinguishbetweentwocharacteristicsofastructuralrelationship,the variablesandtheparameters.Thevariables,whichwewillclassifylateron, arethosecharacteristicswhoseva luesintheobservationperiodcanvary. Thosecharacteristicsthatdonotvarycanberegardedasthestructureof therelation.Thestructureconsistsofthefunctionalformoftherelation, includingtherelationbetweenthemainvariables,thetypeofprobabil- itydistributionoftherandomvariables,andtheparametersofthemodei equations.
|
閼汇儲婀版稊锔跨瑝閼虫垝绗呮潪鏂ょ礉鐠囧嘲浜曟穱鈩冨閹诲繐褰告稉瀣潡娴滃瞼娣惍锟� 閸忚櫕鏁為崗顑跨船閸欏皝鈧粌鍩嗛梽顫姛妫f瑢鈧拷,娑旓箑寮哥亸鍡欑舶閹劌鍨庢禍顐f拱娑旓负鈧拷 閼汇儰绗呮潪钘夊竾缂傗晛瀵橀張澶婄槕閻緤绱濋崥灞剧壉閹殿偆鐖滈崗铏暈閿涘苯娲栨径宥佲偓婊喰掗崢瀣槕閻讲鈧繂宓嗛崣顖樷偓锟�
|