作品介绍

李群在微分方程中的应用


作者:P.J.Olver     整理日期:2022-07-01 08:32:30

  This book is devoted to explaining a wide range of applications of continuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems.
  本书为英文版。
片断:
Thefirstsectiongivesabasicoutlineofthegeneralconceptofamanifold,
theseconddoingthesameforLiegroups,bothlocalandglobal.Inpractice
Liegroupsariseasgroupsofsymmetriesofsomeobject,or,moreprecisely,
aslocalgroupsoftransformationsactingonsomemanifold;thesecondsec-
tiongivesabrieflookatthese.Themostimportantconceptintheentire
theoryisthatofavectorfield,whichactsasthe"infmitesimalgenerator"
ofsomeone-parameterLiegroupoftransformations.Thisconceptisfun-
damentalforboththedevelopmentofthetheoryofLiegroupsandthe
applicationstodifferentialequations.Ithasthecrucialeffectofreplacing
complicatednonlinearconditionsforthesymmetryofsomeobjectundera
groupoftransformationsbyeasilyverifiablelinearconditionsreflectingits
infinitesimalsymmetryunderthecorrespondingvectorfields.Thistechnique
willbeexploredindepthforsystemsofalgebraicanddifferentialequations
inChapter2.ThenotionofvectorfieldthenleadstotheconceptofaLie
algebra,whichcanbethoughtofastheinfinitesimalgeneratoroftheLie
groupitself,thetheoryofwhichisdevelopedinSection1.4.Thefinalsection
ofthischaptergivesabriefintroductiontodifferentialformsandintegration
onmanifolds.
1.1.Manifolds
Throughoutmostofthisbook,wewillbeprimarilyinterestedinobjects,
suchasdifferentialequations,symmetrygroupsandsoon,whicharedefined
onopensubsetsofEuclideanspaceR.Theunderlyinggeometricalfeatures
oftheseobjectswillbeindependentofanyparticularcoordinatesystem
ontheopensubsetwhichmightbeusedtodefinethem,anditbecomesof
greatimportancetofreeourselvesfromthedependenceonparticularlocal
coordinates,sothatourobjectswillbeessentially"coordinate-free".More
specifically,ifURisopenand:U->V,whereV1=Risopen,isany
diffeomorphism,meaningthatisaninfinitelydifferentiablemapwithinfi-
nitelydifferentiableinverse,thenobjectsdefinedonUwillhaveequivalent
counterpartsonV.AlthoughthepreciseformulaefortheobjectonUandits
counterpartonVwill,ingeneral,change,theessentialunderlyingproperties
willremainthesame.Oncewehavefreedourselvesfromthisdependenceon
coordinates,itisasmallsteptothegeneraldefmitionofasmoothmanifold.
Fromthispointofview,manifoldsprovidethenaturalsettingforstudying
objectsthatdonotdependoncoordinates.


八字精批2025运势命中贵人八字合婚



閼汇儲婀版稊锔跨瑝閼虫垝绗呮潪鏂ょ礉鐠囧嘲浜曟穱鈩冨閹诲繐褰告稉瀣潡娴滃瞼娣惍锟�
閸忚櫕鏁為崗顑跨船閸欏皝鈧粌鍩嗛梽顫姛妫f瑢鈧拷,娑旓箑寮哥亸鍡欑舶閹劌鍨庢禍顐f拱娑旓负鈧拷
閼汇儰绗呮潪钘夊竾缂傗晛瀵橀張澶婄槕閻緤绱濋崥灞剧壉閹殿偆鐖滈崗铏暈閿涘苯娲栨径宥佲偓婊喰掗崢瀣槕閻讲鈧繂宓嗛崣顖樷偓锟�

上一本:控制论的发生与传播 下一本:黎曼曲面讲义

作家文集