本书共分为四篇,即深度强化学习、多智能体深度强化学习、多任务深度强化学习和深度强化学习的应用。由浅入深、通俗易懂,涵盖经典算法和近几年的前沿技术进展。特别是书中详细介绍了每一种代表性算法的代码原型实现,旨在理论与实践相结合,让读者学有所得、学有所用。篇(包含~3章)主要讲解深度强化学习基础,侧重于单智能体强化学习算法,相对简单,有助于初级读者理解,同时涵盖了近几年的经典算法和一些前沿的研究成果。第二篇(包含第4~5章)主要侧重于对多智能体深度强化学习的讲解,从多智能体强化学习基本概念到相关算法的讲解和分析,以多个极具代表性的算法为例带领读者逐步学习多智能体训练及控制的理论与方法。同时,还介绍了多智能体强化学习领域一些前沿学术成果。第三篇(包含第6~7章)扩展到多任务场景,称为多任务深度强化学习。首先介绍了多任务强化学习的基本概念和相关基础知识,随后讲解了部分经典的多任务深度强化学习算法。第四篇(包含第8~11章)主要讲解深度强化学习的实际应用,涉及游戏、机器人控制、计算机视觉和自然语言处理四大领域。通过领域应用中思想和方法的讲解,培养读者跨领域解决实际问题的能力,以帮助读者熟练掌握和使用深度强化学习这一强大的方法来解决和优化实际工程领域中的问题。
|