现代几何学方法和应用
作者:B.A.Dubrovin/等 整理日期:2021-03-03 12:09:36
片断: CHAPTER1 GeometryinRegionsofaSpace. BasicConcepts ?Co-ordinateSystems Webeginbydiscussingsomeoftheconceptsfundamentaltogeometry.In schoolgeometry-theso-called"elementaryEuclidean"geometryofthe ancientGreeks-themainobjectsofstudyarevariousmetricalproperties ofthesimplestgeometricalfigures.Thebasicgoalofthatgeometryisto findrelationshipsbetweenlengthsandanglesintrianglesandotherpolygons. Knowledgeofsuchrelationshipsthenprovidesabasisforthecalculation ofthesurfaceareasandvolumesofcertainsolids.Thecentralconcepts underlyingschoolgeometryarethefollowing:thelenethofastraightline segment(orofacirculararc);andtheanglebetweentwointersectingstraight lines(orcirculararcs). Thechiefaimofanalytic(orco-ordinate)geometryistodescribegeo- metricalfiguresbymeansofalgebraicformulaereferredtoaCartesian systemofco-ordinatesoftheplaneor3-dimensionalspace.Theobjects studiedarethesameasinelementaryEuclideangeometry:thesoledifference liesinthemethodology.Again,differentialgeometryisthesameoldsubject, exceptthatherethesubtlertechniquesofthedifferentialcalculusandlinear algebraarebroughtintofullplay.Beingapplicabletogeneral"smooth" geometricalobjects,thesetechniquesprovideaccesstoawiderclassofsuch objects. 1.1.CartesianCo-ordinatesinaSpace Ourmostbasicconceptionofgeometryissetoutinthefollowingtwopara- graphs: (i)WedoourgeometryinacertainspaceconsistingofpointsP,Q,.... (ii)Asinanalyticgeometry,weintroduceasystemofco-ordinatesforthe space.Thisisdonebysimplyassociatingwitheachpointofthespace anorderedn-tuple(x,...,x)ofrealnumbers-theco-ordinatesofthe point-insuchawayastosatisfythefollowingtwoconditions: (a)Distinctpointsareassigneddistinctn-tuples.Inotherwords,points PandQwithco-ordinates(xl....,x)and(y,...,y)areoneand thesamepointifandonlyifx'=y,i=1,...,n. (b)Everypossibien-tuple(x....,x)isused,i.e.isassignedtosome pointofthespace. 1.1.1.Definition.AspacefurnishedwithasystemofCartesianco-ordinates satisfyingconditions(a)and(b)iscalledann-dimensionalCartesianspace. andisdenotedbyR".Theintegerniscalledthedimensionofthespace. Weshalloftenrefersomewhatlooselytothen-tuples(x,....x)them- selvesasthepointsofthespace.ThesimplestexampleofaCartesianspace istherealnumberline.Hereeachpointhasjustoneco-ordinatex,sothat n=1,i.e.itisal-dimensionalCartesianspace.Otherexamples,familiar fromanalyticgeometry,areprovidedbyCartesianco-ordinatizationsof theplane(whichisthena2-dimensionalCartesianspace).andofordinary (i.e.3-dimensional)space(Figure1).TheseCartesianspacesarecompletely adequateforsolvingtheproblemsofschoolgeometry.
|
鑻ユ湰涔︿笉鑳戒笅杞斤紝璇峰井淇℃壂鎻忓彸涓嬭浜岀淮鐮� 鍏虫敞鍏紬鍙封€滃埆闄功棣欌€�,涔﹀弸灏嗙粰鎮ㄥ垎浜湰涔︺€� 鑻ヤ笅杞藉帇缂╁寘鏈夊瘑鐮侊紝鍚屾牱鎵爜鍏虫敞锛屽洖澶嶁€滆В鍘嬪瘑鐮佲€濆嵆鍙€�
|