《近世代数观点下的高等代数》在近世代数思想指导下对高等代数的基本概念、基础理论、基本方法进行系统归纳与提升,同时把国内外有关高等代数研究的新成果引入《近世代数观点下的高等代数》。首先概括地介绍了高等代数的一些主要内容,包括多项式理论、矩阵理论、向量空间和线性变换、欧氏空间和二次型等基础理论。详细讨论了近世代数的一些主要内容,包括群、环、域、模等代数系统,又进一步讨论了主理想整环上的模理论,证明了有限生成模的循环分解定理。这一定理对于后面讨论的有限维线性算子的结构定理是至关重要的。zui后对代数学的后续内容进行了讨论。把这些内容归纳为几个专题:线性算子的结构理论、谱理论、赋范线性空间、希尔伯特空间、双线性映射与张量积、仿射几何与多项式函数等。
|