本书内容简介:统计学是研究数据处理方法的学科,本书系统介绍了统计学中的基本概念和理论。首先介绍如何将社会各行各业中出现的数据系统化成统计模型,成为统计学处理的对象;然后介绍统计学中常用的统计方法和相关理论,为学生将来进行统计研究或实际工作打下一个坚实的基础。 由于统计学发展迅速,内容广泛,难以全面介绍,本书突出重点,着重介绍经典数理统计学中的主要内容,全书分成五章:第一章介绍数据的统计模型以及相应统计量的性质和指数分布族;第二章介绍参数估计方法;第三章介绍大样本方法;第四章介绍统计检验方法,第五章介绍贝叶斯分析方法以及相关的统计决策模型。 本书可作为高等院校概率统计学专业的硕士学位基础课教材,也可作为医学、经济、金融、社会学等相关专业的博士生教材。此外,其他从事科学研究和实际数据处理的人员,比如,各科研单位的科研工作者,工程、医药卫生、商业、银行、保险业等行业的从业人员也可将本书作为参考资料。 作者简介: 郑忠国,北京大学数学科学学院教授、博士生导师,1962年毕业于北京大学数学力学系,1965年北京大学研究生毕业。长期从事数理统计的教学和科研工作,研究方向是非参数统计、可靠性统计以及统计计算。发表论文近百篇。主持完成国家自然科学基金项目“不完全数据统计理论及其应用(1999-2001)”,教育部博士点基金项目“应用统计方法研究”和“工业与医学中的应用统计研究”等。研究项目“随机加权法”获国家教委科技进步二等奖。出版的教材有《高等统计学》(北京大学出版社,1998)和《概率与统计》(北京大学出版社,2007)等。 童行伟,北京师范大学数学科学学院副教授、硕士生导师,2003年毕业于北京大学数学科学学院,获博士学位。研究方向是生物统计和金融统计。发表论文二十余篇。主持国家自然科学基金项目“面板技术数据的统计推断以及应用(2010-2012)”,教育部科技研究重大项目“多元经济数据中的因果分析,经验似然和Copula方法(2009-2011)”。 赵慧,华中师范大学数学与统计学学院副教授、硕士生导师,2005年北京大学数学科学学院博士毕业,2007年中国科学院数学与系统科学研究院博士后出站。近年来从事数理统计的教学与科研工作,研究方向为图模型与因果推断、生存分析与可靠性。在国内外期刊上已经发表论文十余篇。 目录: 第一章统计的基本概念 1.1数据、统计模型和分布族 1.2充分统计量 1.3统计量的完全性 1.4指数族分布 1.5习题 第二章估计 2.1矩估计与最大似然估计计算法 2.2无偏估计 2.3信息不等式 2.4同变估计 2.5稳健估计 2.6习题 第三章估计的大样本性质 3.1相合性第一章统计的基本概念 1.1数据、统计模型和分布族 1.2充分统计量 1.3统计量的完全性 1.4指数族分布 1.5习题 第二章估计 2.1矩估计与最大似然估计计算法 2.2无偏估计 2.3信息不等式 2.4同变估计 2.5稳健估计 2.6习题 第三章估计的大样本性质 3.1相合性 3.2渐近正态性 3.3估计序列的大样本比较 3.4渐近有效性 3.5M一估计和R_估计 3.6样本中位数 3.7习题 第四章假设检验 4.1基本概念 4.2Neyman-Pearson引理. 4.3单调似然比族的检验问题 4.4最不利的分布 4.5一致最优无偏检验 4.6广义似然比检验 4.7不变检验 4.8X2检验 4.9基于计数统计量的检验 4.10u统计量的检验 4.11秩检验 4.12非参数检验的功效 4.13多重假设检验 4.14习题 第五章统计决策和贝叶斯分析简介 5.1统计决策问题概述 5.2贝叶斯决策函数 5.3决策函数的可容许性 5.4决策函数的极小极大性 5.5关于多个参数的同时估计问题 5.6贝叶斯统计 5.7先验分布的确定 5.8习题 习题答案与提示 参考文献 索引
|