作品介绍

李群


作者:DanielBump     整理日期:2017-02-24 17:17:04


  本书作者采取了与许多教材以紧李群的表示论作为理论基础不同的安排,并精心挑选一系列材料,以给予读者更广阔的视野。为介绍紧李群,本书涵盖了 Peter-weyl定理、极大环面的共轭性(提供了两组证明),Weyl特征标公式等内容。随后本书研究了复分析群,一般非紧李群,内容包括:Weyl 群的Coxeter表示、Iwasawa及Bruhat分解、Cartan分解、对称空间、Cayley变换、相对根系、Satake图形,扩展的 Dyakin图以及李群嵌入的方式综述。本书通过介绍表示论在多种领域中的应用(这些领域有:随机矩阵论、Toeplitz矩阵的子式、对称代数分解、 Gelfand对、Hecke代数、有限一般线性群的表示及Grassmann簇与旗簇的上同调),并将对称群的表示论与酋群间的Frobenius- Schur对偶作为统一的主题处理,使读者能够对表示理论有更加深刻地理解。

目录:
  Preface
  Part Ⅰ: Compact Groups
  1 Haar Measure
  2 Schur Orthogonality
  3 Compact Operators
  4 The Peter-Weyl Theorem
  Part Ⅱ: Lie Group Fundamentals
  5 Lie Subgroups of GL(n, C)
  6 Vector Fields
  7 Left-Invariant Vector Fields
  8 The Exponential Map
  9 Tensors and Universal Properties
  10 The Universal Enveloping Algebra
  11 Extension of Scalars
  12 Representations of S1(2, C)
  13 The Universal Cover
  14 The Local Frobenius Theorem
  15 Tori
  16 Geodesics and Maximal Tori
  17 Topological Proof of Cartan's Theorem
  18 The Weyl Integration Formula
  19 The Root System
  20 Examples of Root Systems
  21 Abstract Weyl Groups
  22 The Fundamental Group
  23 Semisimple Compact Groups
  24 Highest-Weight Vectors
  25 The Weyl Character Formula
  26 Spin
  27 Complexification
  28 Coxeter Groups
  29 The Iwasawa Decomposition
  30 The Bruhat Decomposition
  31 Symmetric Spaces
  32 Relative Root Systems
  33 Embeddings of Lie Groups
  Part Ⅲ: Topics
  34 Mackey Theory
  35 Characters of GL(n,C)
  36 Duality between Sk and GL(n,C)
  37 The Jacobi-Trudi Identity
  38 Schur Polynomials and GL(n,C)
  39 Schur Polynomials and Sk
  40 Random Matrix Theory
  41 Minors of Toeplitz Matrices
  42 Branching Formulae and Tableaux
  43 The Cauchy Identity
  44 Unitary Branching Rules
  45 The Involution Model for Sk
  46 Some Symmetric Algebras
  47 Gelfand Pairs
  48 Hecke Algebras
  49 The Philosophy of Cusp Forms
  50 Cohomology of Grassmannians
  References
  Index





上一本:数论概貌 下一本:数值方法和MATLAB实现与应用

作家文集

下载说明
李群的作者是DanielBump,全书语言优美,行文流畅,内容丰富生动引人入胜。为表示对作者的支持,建议在阅读电子书的同时,购买纸质书。

更多好书