本书作者采取了与许多教材以紧李群的表示论作为理论基础不同的安排,并精心挑选一系列材料,以给予读者更广阔的视野。为介绍紧李群,本书涵盖了 Peter-weyl定理、极大环面的共轭性(提供了两组证明),Weyl特征标公式等内容。随后本书研究了复分析群,一般非紧李群,内容包括:Weyl 群的Coxeter表示、Iwasawa及Bruhat分解、Cartan分解、对称空间、Cayley变换、相对根系、Satake图形,扩展的 Dyakin图以及李群嵌入的方式综述。本书通过介绍表示论在多种领域中的应用(这些领域有:随机矩阵论、Toeplitz矩阵的子式、对称代数分解、 Gelfand对、Hecke代数、有限一般线性群的表示及Grassmann簇与旗簇的上同调),并将对称群的表示论与酋群间的Frobenius- Schur对偶作为统一的主题处理,使读者能够对表示理论有更加深刻地理解。
目录: Preface Part Ⅰ: Compact Groups 1 Haar Measure 2 Schur Orthogonality 3 Compact Operators 4 The Peter-Weyl Theorem Part Ⅱ: Lie Group Fundamentals 5 Lie Subgroups of GL(n, C) 6 Vector Fields 7 Left-Invariant Vector Fields 8 The Exponential Map 9 Tensors and Universal Properties 10 The Universal Enveloping Algebra 11 Extension of Scalars 12 Representations of S1(2, C) 13 The Universal Cover 14 The Local Frobenius Theorem 15 Tori 16 Geodesics and Maximal Tori 17 Topological Proof of Cartan's Theorem 18 The Weyl Integration Formula 19 The Root System 20 Examples of Root Systems 21 Abstract Weyl Groups 22 The Fundamental Group 23 Semisimple Compact Groups 24 Highest-Weight Vectors 25 The Weyl Character Formula 26 Spin 27 Complexification 28 Coxeter Groups 29 The Iwasawa Decomposition 30 The Bruhat Decomposition 31 Symmetric Spaces 32 Relative Root Systems 33 Embeddings of Lie Groups Part Ⅲ: Topics 34 Mackey Theory 35 Characters of GL(n,C) 36 Duality between Sk and GL(n,C) 37 The Jacobi-Trudi Identity 38 Schur Polynomials and GL(n,C) 39 Schur Polynomials and Sk 40 Random Matrix Theory 41 Minors of Toeplitz Matrices 42 Branching Formulae and Tableaux 43 The Cauchy Identity 44 Unitary Branching Rules 45 The Involution Model for Sk 46 Some Symmetric Algebras 47 Gelfand Pairs 48 Hecke Algebras 49 The Philosophy of Cusp Forms 50 Cohomology of Grassmannians References Index
|