自然科学中确定性问题的应用数学
作者:林家翘 整理日期:2017-02-24 17:06:04
《自然科学中确定性问题的应用数学》主要讲述从自然科学(特别是物理学)中提炼出来的一些数学问题。重点介绍如何归纳和提出问题,并论述如何求解和分析所得的结果,全书分三大部分:第Ⅰ部分,概述数学和自然科学的关系,全面介绍应用数学的含义、内容和方法,叙述确定性问题的提法和随机过程及其数学表述,给出了傅里叶分析等常用数学工具;第Ⅱ部分论述解常微分方程的基本方法;第Ⅲ部分叙述连续介质场理论。 《自然科学中确定性问题的应用数学》可供大学高年级学生和研究生以及从事工程技术、物理学与应用数学研究的有关人员学习参考。
目录: 第I部分 数学与自然科学相互作用总览 第1章 什么是应用数学? 第2章 确定性系统和常微分方程 第3章 随机过程与偏微分方程 第4章 叠加法、热流动和傅里叶分析 第5章 傅里叶分析的进一步讨论 第Ⅱ部分 用常微分方程说明的一些基本过程 第6章 简化、量纲分析和尺度化 第7章 正则扰动理论 第8章 一个生理流动问题的求解及其所示明的技巧 第9章 奇异扰动理论引论 第10章 奇异扰动理论在生化动力学问题中的一个应用 第11章 应用于单摆问题的三种技巧 第Ⅲ部分 连续介质场理论引论 第12章 杆的纵向运动 第13章 连续介质 第14章 连续介质力学的场方程 第15章 无黏性流体的流动 第16章 位势理论 参考书目 提示和答案
|
闂佸吋鐪归崕鎻掞耿閻楀牏鈻曢柨鏃囨硶閻熸繈鏌ら搹顐㈢亰缂佹鎳忓ḿ顏堝棘閵堝洨顦柣鐘叉搐閸㈠弶绂嶉弴鐔衡攳闁斥晛鍟ˉ鍥煙鐠囪尙绠扮憸鏉挎啞缁嬪鈧綆鍙庡ḿ鈥趁瑰⿰鍐伇婵烇綆鍣i幆宥夋晸閿燂拷 闂佺ǹ绻楀▍鏇㈠极閻愬搫绀傛い鎴f硶閼稿綊鏌涘▎蹇曟闁逞屽墯缁矂宕洪崱娑欌挃妞ゎ偒鍘兼慨娑樜涢敐鍡欐喛闁逞屽墾閹凤拷,婵炴垶妫戠粻鎴濐嚕閸濄儰鐒婇柛鈩冪懅閼稿爼鏌熼鍝勫闁搞劌瀛╃粋宥夘敃閿濆棙瀚虫繛鎴炴鐠愮喖鍩€椤掑﹥瀚� 闂佸吋鐪归崕鎵箔閸涱喗濮滈柦妯侯槸缁斿墽绱撻崒妤佹珔閻庡灚锕㈠鍨緞婵犲嫭顫氶梺娲诲枙缁躲倗妲愬┑瀣Е閻忕偛澧芥竟澶愭煙濞堝灝浜為柣鏍ㄧ矒瀹曟鎼归锝嗘畼闂佹寧绋戦懟顖毭洪弽銊ョ窞鐎广儰璁查崑鎾斥堪閸犵増甯″畷銏⑩偓锝庝簽濡叉洟鏌i鏄忣唹闁逞屽墯缁诲倸鐣甸崱娑樼煑妞ゆ牗菤閸嬫捇鏁撻敓锟�
|