作品介绍

实分析


作者:罗伊登     整理日期:2017-02-24 17:01:34


  《实分析》(英文版第3版)是一本优秀的教材,主要分三部分:第一部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。《实分析》(英文版第3版)的题材是数学教学的共同基础,包含许多数学家的研究成果。

目录:
  Prologue to the Student 1
  I Set Theory 6
  1 Introduction 6
  2 Functions 9
  3 Unions, intersections, and complements 12
  4 Algebras of sets 17
  5 The axiom of choice and infinite direct products 19
  6 Countable sets 20
  7 Relations and equivalences 23
  8 Partial orderings and the maximal principle 24
  9 Well ordering and the countable ordinals 26
  Part One
  THEORY OF FUNCTIONS OF A
  REAL VARIABLE
  2 The Real Number System 31
  1 Axioms for the real numbers 31
  2 The natural and rational numbers as subsets of R 34
  3 The extended real numbers 36
  4 Sequences of real numbers 37
  5 Open and closed sets of real numbers 40
  6 Continuous functions 47
  7 Borel sets 52
  3 Lebesgue Measure 54
  I Introduction 54
  2 Outer measure 56
  3 Measurable sets and Lebesgue measure 58
  *4 A nonmeasurable set 64
  5 Measurable functions 66
  6 Littlewood's three principles 72
  4 The Lebesgue Integral 75
  1 The Riemann integral 75
  2 The Lebesgue integral of a bounded function over a set of finite
  measure 77
  3 The integral of a nonnegative function 85
  4 The general Lebesgue integral 89
  *5 Convergence in measure 95
  S Differentiation and Integration 97
  1 Differentiation of monotone functions 97
  2 Functions of bounded variation 102
  3 Differentiation of an integral 104
  4 Absolute continuity 108
  5 Convex functions 113
  6 The Classical Banach Spaces 118
  1 The Lp spaces 118
  2 The Minkowski and Holder inequalities 119
  3 Convergence and completeness 123
  4 Approximation in Lp 127
  5 Bounded linear functionals on the Lp spaces 130
  Part Two
  ABSTRACT SPACES
  7 Metric Spaces 139
  1 Introduction 139
  2 Open and closed sets 141
  3 Continuous functions and homeomorphisms 144
  4 Convergence and completeness 146
  5 Uniform continuity and uniformity 148
  6 Subspaces 151
  7 Compact metric spaces 152
  8 Baire category 158
  9 Absolute Gs 164
  10 The Ascoli-Arzela Theorem 167
  8 Topological Spaces ltl
  I Fundamental notions 171
  2 Bases and countability 175
  3 The separation axioms and continuous real-valued
  functions 178
  4 Connectedness 182
  5 Products and direct unions of topological spaces 184
  *6 Topological and uniform properties 187
  *7 Nets 188
  9 Compact and Locally Compact Spaces 190
  I Compact spaces 190
  2 Countable compactness and the Bolzano-Weierstrass
  property 193
  3 Products of compact spaces 196
  4 Locally compact spaces 199
  5 a-compact spaces 203
  *6 Paracompact spaces 204
  7 Manifolds 206
  *8 The Stone-Cech compactification 209
  9 The Stone-Weierstrass Theorem 210
  10 Banach Spaces 217
  I Introduction 217
  2 Linear operators 220
  3 Linear functionals and the Hahn-Banach Theorem 222
  4 The Closed Graph Theorem 224
  5 Topological vector spaces 233
  6 Weak topologies 236
  7 Convexity 239
  8 Hilbert space 245
  Part Three
  GENERAL MEASURE AND INTEGRATION
  THEORY
  11 Measure and Integration 253
  1 Measure spaces 253
  2 Measurable functions 259
  3 Integration 263
  4 General Convergence Theorems 268
  5 Signed measures 270
  6 The Radon-Nikodym Theorem 276
  7 The Lp-spaces 282
  12 Measure and Outer Measure 288
  1 Outer measure and measurability 288
  2 The Extension Theorem 291
  3 The Lebesgue-Stieltjes integral 299
  4 Product measures 303
  5 Integral operators 313
  *6 Inner measure 317
  *7 Extension by sets of measure zero 325
  8 Caratheodory outer measure 326
  9 Hausdorff measure 329
  13 Measure and Topology 331
  1 Baire sets and Borel sets 331
  2 The regularity of Baire and Borel measures 337
  3 The construction of Borel measures 345
  4 Positive linear functionals and Borel measures 352
  5 Bounded linear functionals on C(X) 355
  14 Invariant Measures 361
  1 Homogeneous spaces 361
  2 Topological equicontinuity 362
  3 The existence ofinvariant measures 365
  4 Topological groups 370
  5 Group actions and quotient spaces 376
  6 Unicity ofinvariant measures 378
  7 Groups ofdiffeomorphisms 388
  15 Mappings of Measure Spaces 392
  1 Point mappings and set mappings 392
  2 Boolean algebras 394
  3 Measure algebras 398
  4 Borel equivalences 401
  5 Borel measures on complete separable metric spaces 406
  6 Set mappings and point mappings on complete separable
  metric spaces 412
  7 The isometries of Lp 415
  16 The Daniell Integral 419
  1 Introduction 419
  2 The Extension Theorem 422
  3 Uniqueness 427
  4 Measurability and measure 429
  Bibliography 435
  Index of Symbols 437
  Subject Index 439





上一本:拓扑空间论 下一本:图解数学学习法

作家文集

下载说明
实分析的作者是罗伊登,全书语言优美,行文流畅,内容丰富生动引人入胜。为表示对作者的支持,建议在阅读电子书的同时,购买纸质书。

更多好书