作品介绍

纯数学教程


作者:[英]G.H.Hardy     整理日期:2017-02-24 16:51:54


  自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
  在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。

作者简介
  G. H.Hardy英国数学家(1877—1947)。1896年考入剑桥三一学院,并子1900年在剑桥获得史密斯奖。之后,在英国牛津大学。剑桥大学任教,是20世纪初著名的数学分析家之一。
  他的贡献包括数论中的丢番图逼近、堆垒数论、素数分布理论与黎曼函数,调和分析中的三角级数理论。发散级数求和与陶伯定理。不等式、积分变换与积分方程等方面,对分析学的发展有深刻的影响。以他的名字命名的Hp空间(哈代空间),至今仍是数学研究中十分活跃的领域。
  除本书外,他还著有《不等式》、《发散级数》等10多部书籍与300多篇文章。

目录:
  CHAPTER I
  REAL VARIABLES
  SECT.
  1-2. Rational numbers
  3-7. Irrational numbers
  8. Real numbers
  9. Relations of magnitude between real numbers
  10-11. Algebraical operations with real numbers
  12. The number 2
  13-14. Quadratic surds
  15. The continum
  16. The continuous real variable
  17. Sections of the real numbers. Dedekind's theorem
  18. Points of accumulation
  19. Weierstrass's theorem .
  Miscellaneous examples
  CHAPTER II
  FUNCTIONS OF REAL VARIABLES
  20. The idea of a function
  21. The graphical representation of functions. Coordinates
  22. Polar coordinates
  23. Polynomias
  24-25. Rational functions
  26-27. Aigebraical functious
  28-29. Transcendental functions
  30. Graphical solution of equations
  31. Functions of two variables and their graphical repre-
  sentation
  32. Curves in a plane
  33. Loci in space
  Miscellaneous examples
  CHAPTER III
  COMPLEX NUMBERS
  SECT.
  34-38. Displacements
  39-42. Complex numbers
  43. The quadratic equation with real coefficients
  44. Argand's diagram
  45. De Moivre's theorem
  46. Rational functions of a complex variable
  47-49. Roots of complex numbers
  Miscellaneous examples
  CHAPTER IV
  LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
  50. Functions of a positive integral variable
  51. Interpolation
  52. Finite and infinite classes
  53-57. Properties possessed by a function of n for large values
  of n
  58-61. Definition of a limit and other definitions
  62. Oscillating functions
  63-68. General theorems concerning limits
  69-70. Steadily increasing or decreasing functions
  71. Alternative proof of Weierstrass's theorem
  72. The limit of xn
  73. The limit of(1+
  74. Some algebraical lemmas
  75. The limit of n(nX-1)
  76-77. Infinite series
  78. The infinite geometrical series
  79. The representation of functions of a continuous real
  variable by means of limits
  80. The bounds of a bounded aggregate
  81. The bounds of a bounded function
  82. The limits of indetermination of a bounded function
  83-84. The general principle of convergence
  85-86. Limits of complex functions and series of complex terms
  87-88. Applications to zn and the geometrical series
  89. The symbols O, o,
  Miscellaneous examples
  CHAPTER V
  LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
  AND DISCONTINUOUS FUNCTIONS
  90-92. Limits as x-- or x---
  93-97. Limits as z-, a
  98. The symbols O, o,~: orders of smallness and greatness
  99-100. Continuous functions of a real variable
  101-105. Properties of continuous functions. Bounded functions.
  The oscillation of a function in an interval
  106-107. Sets of intervals on a line. The Heine-Borel theorem
  108. Continuous functions of several variables
  109-110. Implicit and inverse functions
  Miscellaneous examples
  CHAPTER VI
  DERIVATIVES AND INTEGRALS
  111-113. Derivatives
  114. General rules for differentiation
  115. Derivatives of complex functions
  116. The notation of the differential calculus
  117. Differentiation of polynomials
  118. Differentiation of rational functions
  119. Differentiation of algebraical functions
  120. Differentiation of transcendental functions
  121. Repeated differentiation
  122. General theorems concerning derivatives, Rolle's
  theorem
  123-125. Maxima and minima
  126-127. The mean value theorem
  128. Cauchy's mean value theorem
  SECT.
  129. A theorem of Darboux
  130-131. Integration. The logarithmic function
  132. Integration of polynomials
  133-134. Integration of rational functions
  135-142. Integration of algebraical functions. Integration by
  rationalisation. Integration by parts
  143-147. Integration of transcendental functions
  148. Areas of plane curves
  149. Lengths of plane curves
  Miscellaneous examples
  CHAPTER VII
  ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
  150-151. Taylor's theorem
  152. Taylor's series
  153. Applications of Taylor's theorem to maxima and
  minima
  154. The calculation of certain limits
  155. The contact of plane curves
  156-158. Differentiation of functions of several variables
  159. The mean value theorem for functions of two variables
  160. Differentials
  161-162. Definite integrals
  163. The circular functions
  164. Calculation of the definite integral as the limit of a sum
  165. General properties of the definite integral
  166. Integration by parts and by substitution
  167. Alternative proof of Taylor's theorem
  168. Application to the binomial series
  169. Approximate formulae for definite integrals. Simpson's
  rule
  170. Integrals of complex functions
  Miscellaneous examples
  CHAPTER VIII
  THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
  SECT. PAGE
  171-174. Series of positive terms. Cauchy's and d'Alembert's
  tests of convergence
  175. Ratio tests
  176. Dirichlet's theorem
  177. Multiplication of series of positive terms
  178-180. Further tests for convergence. Abel's theorem. Mac-
  laurin's integral test
  181. The series n-s
  182. Cauchy's condensation test
  183. Further ratio tests
  184-189. Infinite integrals
  190. Series of positive and negative terms
  191-192. Absolutely convergent series
  193-194. Conditionally convergent series
  195. Alternating series
  196. Abel's and Dirichlet's tests of convergence
  197. Series of complex terms
  198-201. Power series
  202. Multiplication of series
  203. Absolutely and conditionally convergent infinite
  integrals
  Miscellaneous examples
  CHAPTER IX
  THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
  OF A REAL VARIABLE
  204-205. The logarithmic function
  206. The functional equation satisfied by log x
  207-209. The behaviour of log x as x tends to infinity or to zero
  210. The logarithmic scale of infinity
  211. The number e
  212-213. The exponential function
  214. The general power ax
  215. The exponential limit
  216. The logarithmic limit
  SECT.
  217. Common logarithms
  218. Logarithmic tests of convergence
  219. The exponential series
  220. The logarithmic series
  221. The series for arc tan x
  222. The binomial series
  223. Alternative development of the theory
  224-226. The analytical theory of the circular functions
  Miscellaneous examples
  CHAPTER X
  THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
  AND CIRCULAR FUNCTIONS
  227-228. Functions of a complex variable
  229. Curvilinear integrals
  230. Definition of the logarithmic function
  231. The values of the logarithmic function
  232-234. The exponential function
  235-236. The general power a
  237-240. The trigonometrical and hyperbolic functions
  241. The connection between the logarithmic and inverse
  trigonometrical functions
  242. The exponential series
  243. The series for cos z and sin z
  244-245. The logarithmic series
  246. The exponential limit
  247. The binomial series
  Miscellaneous examples
  The functional equation satisfied by Log z, 454. The function e, 460.
  Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
  complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
  Roots of transcendental equations, 479, 480. Transformations, 480-483.
  Stereographic projection, 482. Mercator's projection, 482. Level curves,
  484-485. Definite integrals, 486.
  APPENDIX I. The proof that every equation has a root
  APPENDIX II. A note on double limit problems
  APPENDIX III. The infinite in analysis and geometry
  APPENDIX IV. The infinite in analysis and geometry
  INDEX





上一本:跳跃的无穷 下一本:矩阵博士的魔法数

作家文集

下载说明
纯数学教程的作者是[英]G.H.Hardy,全书语言优美,行文流畅,内容丰富生动引人入胜。为表示对作者的支持,建议在阅读电子书的同时,购买纸质书。

更多好书