《狭义相对论》按照相关物理历史的发展顺序及数学内部逻辑顺序,完整、系统地讲授狭义相对论,是作者在汲取了多年教学经验和前辈相关专著(讲义)的精华,并进行了多次修改后形成的较为完美和严谨的版本。书中精心配置了练习题(部分习题取自牛津大学考试题)并在附录中对部分习题给出了提示和注解。《狭义相对论》适合理科专业(包括力学)大学二年级本科生,或具有较扎实的本科线性代数和微积分知识的学生用作教学用书,也适于研究生、教师作为教学参考书使用。
目录: 1. Relativity in Classical Mechanics 1.1 Frames of Reference 1.2 Relativity 1.3 Frames of Reference 1.4 Newton's Laws 1.5 Galilean Transformations 1.6 Mass, Energy, and Momentum 1.7 Space-time 1.8 *Galilean Symmetries 1.9 Historical Note 2. Maxwell's Theory 2.1 Introduction 2.2 The Unification of Electricity and Magnetism 2.3 Charges, Fields, and the Lorentz Force Law 2.4 Stationary Distributions of Charge 2.5 The Divergence of the Magnetic Field 2.6 Inconsistency with Galilean Relativity 2.7 The Limits of Galilean Invariance 2.8 Faraday's Law of Induction 2.9 The Field of Charges in Uniform Motion 2.10 Maxwell's Equations 2.11 The Continuity Equation 2.12 Conservation of Charge 2.13 Historical Note 3. The Propagation of Light 3.1 The Displacement Current 3.2 The Source-free Equations 3.3 The Wave Equation 3.4 Monochromatic Plane Waves 3.5 Polarization 3.6 Potentials 3.7 Gauge Transformations 3.8 Photons 3.9 Relativity and the Propagation of Light 3.10 The Michelson-Morley Experiment 4. Einstein's Special Theory of Relativity 4.1 Lorentz's Contraction 4.2 Operational Definitions of Distance and Time 4.3 The Relativity of Simultaneity 4.4 Bondi's k-Factor 4.5 Time Dilation 4.6 The Two-dimensional Lorentz Transformation 4.7 Transformation of Velocity 4.8 The Lorentz Contraction 4.9 Composition of Lorentz Transformations 4.10 Rapidity 4.11 *The Lorentz and Poincare Groups 5. Lorentz Transformations in Four Dimensions 5.1 Coordinates in Four Dimensions 5.2 Four-dimensional Coordinate Transformations 5.3 The Lorentz Transformation in Four Dimensions 5.4 The Standard Lorentz Transformation 5.5 The General Lorentz Transformation 5.6 Euclidean Space and Minkowski Space 5.7 Four-vectors 5.8 Temporal and Spatial Parts 5.9 The Inner Product 5.10 Classification of Four-vectors 5.11 Causal Structure of Minkowski Space 5.12 Invariant Operators 5.13 The Frequency Four-vector 5.14 *Affine Spaces and Covectors 6. Relative Motion 6.1 Transformations between Frames 6.2 Proper Time 6.3 Four-velocity 6.4 Four-acceleration 6.5 Constant Acceleration 6.6 Continuous Distributions 6.7 *Rigid Body Motion 6.8 Visual Observation 7. Relativistic Collisions 7.1 The Operational Definition of Mass 7.2 Conservation of Four-momentum 7.3 Equivalence of Mass and Energy 8. Relativistic Electrodynamics 8.1 Lorenz Transformations of E and B 8.2 The Four-Current and the Four-potential 8.3 Transformations of E and B 8.4 Linearly Polarized Plane Waves 8.5 Electromagnetic Energy 8.6 The Four-momentum of a Photon 8.7 *Advanced and Retarded Solutions 9. *Tensors and Isometrics 9.1 Affine Space 9.2 The Lorenz Group 9.3 Tensors 9.4 The Tensor Product 9.5 Tensors in Murkowski Space 9.6 Tensor Components 9.7 Examples of Tensors 9.8 One-parameter Subgroups 9.9 Isometrics 9.10 The Riemann Sphere and Spinners Notes on Exercises Vector Calculus Bibliography Index
|