作品介绍

数论导引


作者:埃弗里斯特     整理日期:2017-02-24 16:30:18


  《数论导引(影印版)》从最初等的数论知识谈起,一直讲到解析数论、代数数论、椭圆曲线以及数论在密码理论中的应用等,涉及范围很广阔,而且内容并不肤浅。《数论导引(影印版)》还有不少练习题,以及历史的评注等。

目录
  Introduction1 A Brief History of Prime 1.1 Euclid and Primes 1.2 Summing Over the Primes 1.3 Listing the Primes 1.4 Fermat Numbers 1.5 Primality Testing 1.6 Proving the Fundamental Theorem of Arithmetic 1.7 Euclid's Theorem Revisited2 Diophantine Equations 2.1 Pythagoras 2.2 The Fundamental Theorem of Arithmetic in Other Contexts 2.3 Sums of Squares 2.4 Siegel's Theorem 2.5 Fermat, Catalan, and Euler3 Quadratic Diophantine Equations 3.1 Quadratic Congruences 3.2 Euler's Criterion 3.3 The Quadratic Reciprocity Law 3.4 Quadratic Rings 3.5 Units in Z 3.6 Quadratic Forms4 Recovering the Fundamental Theorem of Arithmetic 4.1 Crisis 4.2 An Ideal Solution 4.3 Fundamental Theorem of Arithmetic for Ideals 4.4 The Ideal Class Group5 Elliptic Curves 5.1 Rational Points 5.2 The Congruent Number Problem 5.3 Explicit Formulas 5.4 Points of Order Eleven 5.5 Prime Values of Elliptic Divisibility Sequences 5.6 Ramanujan Numbers and the Taxicab Problem6 Elliptic Functions 6.1 Elliptic Functions 6.2 Parametrizing an Elliptic Curve 6.3 Complex Torsion 6.4 Partial Proof of Theorem 6.57 Heights 7.1 Heights on Elliptic Curves 7.2 Mordell's Theorem 7.3 The Weak Mordell Theorem: Congruent Number Curve 7.4 The Parallelogram Law and the Canonical Height 7.5 Mahler Measure and the Naive Parallelogram Law8 The Riemann Zeta Function 8.1 Euler's Summation Formula 8.2 Multiplicative Arithmetic Functions 8.3 Dirichlet Convolution 8.4 Euler Products 8.5 Uniform Convergence 8.6 The Zeta Function Is Analytic 8.7 Analytic Continuation of the Zeta Function9 The Functional Equation of the Riemann Zeta Function 9.1 The Gamma Function 9.2 The Functional Equation 9.3 Fourier Analysis on Schwartz Spaces 9.4 Fourier Analysis of Periodic Functions 9.5 The Theta Function 9.6 The Gamma Function Revisited10 Primes in an Arithmetic Progression 10.1 A New Method of Proof 10.2 Congruences Modulo 3 10.3 Characters of Finite Abelian Groups 10.4 Dirichlet Characters and L-Functions 10.5 Analytic Continuation and Abel's Summation Formula 10.6 Abel's Limit Theorem11 Converging Streams 11.1 The Class Number Formula 11.2 The Dedekind Zeta Function 11.3 Proof of the Class Number Formula 11.4 The Sign of the Gauss Sum 11.5 The Conjectures of Birch and Swinnerton-Dyer12 Computational Number Theory 12.1 Complexity of Arithmetic Computations 12.2 Public-key Cryptography 12.3 Primality Testing: Euclidean Algorithm 12.4 Primality Testing: Pseudoprimes 12.5 Carmichael Numbers 12.6 Probabilistic Primality Testing 12.7 The Agrawal-Kayal-Saxena Algorithm 12.8 Factorizing 12.9 Complexity of Arithmetic in Finite FieldsReferencesIndex
  Introduction1 A Brief History of Prime 1.1 Euclid and Primes 1.2 Summing Over the Primes 1.3 Listing the Primes 1.4 Fermat Numbers 1.5 Primality Testing 1.6 Proving the Fundamental Theorem of Arithmetic 1.7 Euclid's Theorem Revisited2 Diophantine Equations 2.1 Pythagoras 2.2 The Fundamental Theorem of Arithmetic in Other Contexts 2.3 Sums of Squares 2.4 Siegel's Theorem 2.5 Fermat, Catalan, and Euler3 Quadratic Diophantine Equations 3.1 Quadratic Congruences 3.2 Euler's Criterion 3.3 The Quadratic Reciprocity Law 3.4 Quadratic Rings 3.5 Units in Z 3.6 Quadratic Forms4 Recovering the Fundamental Theorem of Arithmetic 4.1 Crisis 4.2 An Ideal Solution 4.3 Fundamental Theorem of Arithmetic for Ideals 4.4 The Ideal Class Group5 Elliptic Curves 5.1 Rational Points 5.2 The Congruent Number Problem 5.3 Explicit Formulas 5.4 Points of Order Eleven 5.5 Prime Values of Elliptic Divisibility Sequences 5.6 Ramanujan Numbers and the Taxicab Problem6 Elliptic Functions 6.1 Elliptic Functions 6.2 Parametrizing an Elliptic Curve 6.3 Complex Torsion 6.4 Partial Proof of Theorem 6.57 Heights 7.1 Heights on Elliptic Curves 7.2 Mordell's Theorem 7.3 The Weak Mordell Theorem: Congruent Number Curve 7.4 The Parallelogram Law and the Canonical Height 7.5 Mahler Measure and the Naive Parallelogram Law8 The Riemann Zeta Function 8.1 Euler's Summation Formula 8.2 Multiplicative Arithmetic Functions 8.3 Dirichlet Convolution 8.4 Euler Products 8.5 Uniform Convergence 8.6 The Zeta Function Is Analytic 8.7 Analytic Continuation of the Zeta Function9 The Functional Equation of the Riemann Zeta Function 9.1 The Gamma Function 9.2 The Functional Equation 9.3 Fourier Analysis on Schwartz Spaces 9.4 Fourier Analysis of Periodic Functions 9.5 The Theta Function 9.6 The Gamma Function Revisited10 Primes in an Arithmetic Progression 10.1 A New Method of Proof 10.2 Congruences Modulo 3 10.3 Characters of Finite Abelian Groups 10.4 Dirichlet Characters and L-Functions 10.5 Analytic Continuation and Abel's Summation Formula 10.6 Abel's Limit Theorem11 Converging Streams 11.1 The Class Number Formula 11.2 The Dedekind Zeta Function 11.3 Proof of the Class Number Formula 11.4 The Sign of the Gauss Sum 11.5 The Conjectures of Birch and Swinnerton-Dyer12 Computational Number Theory 12.1 Complexity of Arithmetic Computations 12.2 Public-key Cryptography 12.3 Primality Testing: Euclidean Algorithm 12.4 Primality Testing: Pseudoprimes 12.5 Carmichael Numbers 12.6 Probabilistic Primality Testing 12.7 The Agrawal-Kayal-Saxena Algorithm 12.8 Factorizing 12.9 Complexity of Arithmetic in Finite FieldsReferencesIndex

八字精批2025运势命中贵人八字合婚



闂備礁鍚嬮惇褰掑磿閹绘帪鑰块柣妤€鐗忛埢鏇㈡煥閺冨洦纭堕柣鐔哥箞閺屻倝鎼归銏喊缂備焦顨呴幊蹇撫缚椤忓牆妫橀柕鍫濇川椤︻噣鏌i悩鍙夋悙闁搞垹寮剁粋宥夊即閻旇 鏀抽梺鏂ユ櫅閸燁偊藟閸ヮ剚鐓欓悹鍥皺缁犳壆鎲搁弶鎸庡暈缂佸顦遍埀顒婄秵閸欏骸岣块垾瓒佺懓饪伴崘顏嗕紘濠电儑缍嗛崳锝夊箚瀹ュ鏅搁柨鐕傛嫹
闂備胶枪缁绘鈻嶉弴銏犳瀬闁绘劕鎼粈鍌涖亜閹达絾纭堕柤绋跨秺閺屾稑鈻庤箛鏇燁唸闂侀€炲苯澧紒顔肩焸瀹曟椽宕卞☉娆屾寖濡炪値鍋掗崢鍏兼叏濞戞娑㈡晲閸℃瑦鍠涢梺閫炲苯澧鹃柟鍑ゆ嫹,濠电偞鍨跺Λ鎴犵不閹存繍鍤曢柛婵勫劙閻掑﹪鏌涢埄鍐噮闁肩ǹ鐖奸弻鐔碱敊閸濆嫬顬堥梺鎼炲妼鐎涒晝绮嬪澶樻晝闁挎繂妫欑€氳櫕绻涢幋鐐搭棖閻犳劗鍠栭崺鈧い鎺戯攻鐎氾拷
闂備礁鍚嬮惇褰掑磿閹殿喚绠旈柛娑卞枟婵粓鏌﹀Ο渚Ц缂佹柨澧界槐鎾诲磼濡や焦鐝旈柣搴$仛閿曘垹顕i崹顐㈢窞濠电姴瀚~姘舵⒑濞茶鏋欑紒韬插€楀Σ鎰攽鐎n亣袝闁诲繒鍋涙晶鑺ョ珶婢舵劖鐓欐繛鍫濈仢娴滅偤鏌i弽銊х煉鐎规洘顨婇幖褰掝敃閿濆棙鐣奸梻浣瑰缁嬫垿鎳熼姣椽寮介妸銉х獮閻庡箍鍎扮拋鏌ュ磻閹炬枼鍫柛鐘靛鐢€崇暦閵忊懇鍋撻敐搴濈敖婵″弶娲熼弻锝夘敊閺勫浚鍞归梺閫炲苯澧紒璇插€搁悾鐢稿幢濞戞ḿ鐓戝銈嗙墬鑿ら柛瀣崌閺佹捇鏁撻敓锟�

上一本:从庞加莱到佩雷尔曼 下一本:吉米多维奇数学分析习题集学习指引

作家文集