作品介绍

数学世纪


作者:皮耶尔乔治·奥迪弗雷迪     整理日期:2017-02-24 16:29:00


  《数学世纪:过去100年间30个重大问题》以简短可读的方式论述了整个20世纪的数学。20世纪的数学博大精深,新兴领域及学科的建立发展,许多经典问题得到解决,大量新的有意义的问题的引入,为数学带来了活力。《数学世纪:过去100年间30个重大问题》介绍了数学基础,20世纪的纯粹数学、应用和计算数学,以及目前未解的重要问题,中间穿插了希尔伯特的23个问题的解决情况、菲尔兹奖和沃尔夫奖得主的工作成就等。

目录:
  译者序
  前言
  致谢
  导论
  第1章 基础
  1.1 1920年代:集合
  1.2 1940年代:结构
  1.3 1960年代:范畴
  1.4 1980年代:函数
  第2章 纯粹数学
  2.1 数学分析:勒贝格测度(1902)
  2.2 代数:施泰尼茨对域的分类(1910)
  2.3 拓扑学:布劳威尔的不动点定理(1910)
  2.4 数论:盖尔芳德的超越数(1929)
  2.5 逻辑:哥德尔的不完全性定理(1931)
  2.6 变分法:道格拉斯的极小曲面(1931)
  2.7 数学分析:施瓦兹的广义函数论(1945)
  2.8 微分拓扑:米尔诺的怪异结构(1956)
  2.9 模型论:鲁宾逊的超实数(1961)
  2.10 集合论:科恩的独立性定理(1963)
  2.11 奇点理论:托姆对突变的分类(1964)
  2.12 代数:高林斯坦的有限群分类(1972)
  2.13 拓扑学:瑟斯顿对三维曲面的分类(1982)
  2.14 数论:怀尔斯证明费马大定理(1995)
  2.15 离散几何:黑尔斯解决开普勒问题(1998)
  第3章 应用数学
  3.1 结晶学:比伯巴赫的对称群(1910)
  3.2 张量演算:爱因斯坦的广义相对论(1915)
  3.3 博弈论:冯?诺伊曼的极小极大定理(1928)
  3.4 泛函分析:冯?诺伊曼对量子力学的公理化(1932)
  3.5 概率论:柯尔莫哥洛夫的公理化(1933)
  3.6 优化理论:丹齐格的单纯形法(1947)
  3.7 一般均衡理论:阿罗一德布鲁存在性定理(1954)
  3.8 形式语言理论:乔姆斯基的分类(1957)
  3.9 动力系统理论:KAM定理(1962)
  3.10 纽结理论:琼斯的不变量(1984)
  第4章 数学与计算机
  4.1 算法理论:图灵的刻画(1936)
  4.2 人工智能:香农对国际象棋对策的分析(1950)
  4.3 混沌理论:劳伦茨的奇怪吸引子(1963)
  4.4 计算机辅助证明:阿佩尔与哈肯的四色定理(1976)
  4.5 分形分析:芒德布罗集(1980)
  第5章 未解问题
  5.1 数论:完美数问题(公元前300年)
  5.2 复分析:黎曼假设(1859)
  5.3 代数拓扑:庞加莱猜想(1904)
  5.4 复杂性理论:P=NP问题(1972)
  结束语
  参考文献
  索引
  译后记





上一本:算子半群及应用 下一本:二维国内外

作家文集

下载说明
数学世纪的作者是皮耶尔乔治·奥迪弗雷迪,全书语言优美,行文流畅,内容丰富生动引人入胜。为表示对作者的支持,建议在阅读电子书的同时,购买纸质书。

更多好书