有很多读者纷纷留言想得到计算机视觉领域的图书推荐。今天我们就满足大家的愿望,邀请微软亚洲研究院计算机视觉组资深研究员王井东博士为大家推荐计算机视觉领域的经典书目,他还贴心地为大家划分了综合篇、几何篇、机器学习篇和经典读物四大类。 计算机视觉是从图像和视频中提出数值或符号信息的计算系统,更形象一点说,计算机视觉是让计算机具备像人类一样的眼睛,看到图像,并理解图像。加州大学洛杉矶分校统计学和计算机科学教授教授朱松纯曾表示“人的大脑皮层的活动大约70%是在处理视觉相关信息。视觉就相当于人脑的大门。如果不能处理视觉信息的话,整个人工智能系统是个空架子,只能做符号推理,没法研究真实世界的人工智能。” 一起来看看这些计算机视觉领域的修炼秘笈吧!下一个计算机视觉高手也许就是你哦! 一、综合篇 1. Computer Vision: A Modern Approach
作者:David A. Forsyth, Jean Ponce 出版时间:2003(第一版),2011(第二版) 适合人群:初级到中级学者 推荐指数:★★★★★ 主要内容:本书包含了计算机视觉领域众多问题:成像、面向单张图像的早期视觉、面向多张图像的早期视觉、中层视觉问题、高层视觉问题,也包括了相关的视觉应用,如基于图像的建模与绘制、以人为中心的视觉问题、图像搜索,最后,作者也简要讲述了视觉算法相关的优化技术。 推荐理由:本书既有对计算机视觉问题的系统的讲解,又有对相关问题的详细的讲述。通过本书,读者能够实现计算机视觉应用。本教材成书较早(第一版:2003,第二版:2011),但内容全面广泛,可作为高年级本科生或研究生的教材或参考书,也可作为计算机视觉工程人员的参考书。本书也适合作为计算机视觉相关领域,包括多媒体搜索、计算机图像学、机器人、图像处理、以及成像等领域的研究人员参考书。 2. Computer Vision: Algorithms and Applications
作者:Richard Hartley, Andrew Zisserman 出版时间:2000 (第一版),2004(第二版) 适合人群:初级到中级学者 推荐指数:★★★★★ 本书内容:理解真实世界的三维结构是计算机视觉领域的一个基本问题。本书内容包括三维几何与重建所需要的计算相关的几何原则及物体的代数表达。本书以统一框架的形式给出了场景重建的理论与实现细节。同时作者也提供了详尽的背景知识、应用和实现算法的解释。 推荐理由:本教材系统是多视角几何经典教材,既包含经典的方法,又包括现代的方法。本书写作清晰明了,又不失连贯性。本书可作为计算机视觉和计算机图形学等课程高年级本科生和研究生教材,对于自动驾驶、机器人、AR/VR、无人机、地理测绘等领域研究人员和技术人员是重要的参考书。 2. An Invitation to 3-D Vision: From Images to Geometric Models
作者:Yi Ma, Stefano Soatto, Jana Kosecká, S. Shankar Sastry 出版时间:2005 适合人群:初级到中级学者 推荐指数:★★★★★ 主要内容:本书着重讲述了计算机视觉中的重要问题:利用线性代数和矩阵理论从一系列二维图像中重建三维结构和运动。本书的特点是一套基于多幅图像的研究几何和重建几何模型的统一框架,也包括了图像形成、基本的图像处理方法以及特征提取等内容,同时也给出实现视觉算法及系统的操作指南。 推荐理由:本书适合于计算机视觉、应用数学、计算机图形学,及机器人等方向的高年级本科生、研究生以及研究人员。同时作者也提供了算法实现的程序,对于自动驾驶、机器人、AR/VR、无人机、地理测绘等领域研究人员和技术人员是重要的参考书。 3. 计算机视觉: 计算理论与算法基础
作者:Simon J.D. Prince 出版时间:2012 适合人群:初级到中级学者 推荐指数:★★★★★ 主要内容:本书介绍了解决计算机视觉问题的概率模型学习与推理的方法,讲述了如何利用训练数据建立观察图像和要估计的内容的联系,例如估计三维结构。本书包括概率基础知识、概率图模型、图分割方法、多视觉几何、相机标定、人脸识别、目标跟踪等等。书中共介绍了70多种算法。 推荐理由:本书可以看成计算机视觉与机器学习结合的果实,提供了应用于计算机视觉研究的机器学习(深度学习除外)基本知识,描述简明直观。本教材可作为高年级本科生以及研究生计算机视觉教材,也适合于计算机视觉从业人员。 2. Pattern Recognition and Machine Learning
作者:Christopher Bishop 出版时间:2006 适合人群:初级到中级学者 推荐指数:★★★★★ 主要内容:本书是第一本从贝叶斯的角度讲述模式识别,用图模型的方式描述离散概率分布的书籍。内容包括:线性回归模型、线性分类模型、神经网络、核方法、稀疏核方法、图模型、混合模型与期望最大化算法、近似推理、采样方法、连续隐变量模型等。 推荐理由:本书主要讲述应用于模式识别问题的机器学习方法,也包括视觉识别问题,适合作为高年级本科生及研究生的教材,也是计算机视觉领域研究人员及从业人员学习机器学习的参考书。 3. Deep Learning
作者:Ian Goodfellow and Yoshua Bengio and Aaron Courville 出版时间:2016 适合人群:初级、中级到高级学者 推荐指数:★★★★☆ 主要内容:本书包括三大部分,第一部分介绍了基本的数学工具和机器学习概念,第二部分描述了最著名的深度学习算法,第三部分列举了深度学习研究前沿的想法及问题。 推荐理由:本书不是专门为计算机视觉而写的深度学习教材,但是包含了成书之前计算机视觉领域发明的深度学习技术,可作为计算机视觉领域的高年级本科生及研究生的教材,也可作为计算机视觉研究人员和从业人员参考书。 4. Generalized Principal Component Analysis
作者:RenéVidal, Yi Ma, Shankar Sastry 出版时间:2016 适合人群:中级到高级学者 推荐指数:★★★★★ 主要内容:本书介绍了关于从一个或多个子空间或流形产生出来的,可能含有噪声、大误差或者异常的高维数据建模的数学理论和计算工作的最新进展,涵盖了用于子空间估计和分割的最新的代数的、几何的、统计的计算方法,并且给出了若干在图像处理、图像视频分割、人脸识别与聚类等问题的有趣应用。 推荐理由:本教材可做为计算机视觉以及图像和信号处理、数据科学、机器学习、系统理论等领域的研究生和起步的研究者。本书包含了大量的图解说明、例子、以及练习习题,同时涵盖了本教材涉及到的统计、优化、代数几何等方面的基本概念和原理。 四、经典读物篇 Vision: A Computational Investigation into the Human Representation and Processing of Visual Information