人工智能已成发展趋势,而深度学习则是其中很有用的工具之一。虽然科技发展速度迅猛,现在实用技术更新换代的频率已经迅速到以周来计算,但是其背后很为基础的知识却是共通的。本书较为全面地介绍了神经网络的诸多基础与进阶的技术,同时还介绍了如何利用神经网络来解决真实世界中的现实任务。本书各章的内容不仅包括经典的传统机器学习算法与神经网络的方方面面,还对它们进行了对比与创新。如果能够掌握本书所讲述的知识,相信即使具体的技术更新得再快,读者也能根据本书所介绍的知识来快速理解、上手与改进它们。本书兼顾了理论与实践,不仅从公式上推导出神经网络的各种性质,也从实验上对它们进行了验证,比较适合初学者进行学习。同时,本书所给出的框架更能直接、简单、快速地应用在实际任务中,适合相关从业人员使用。何宇健,毕业于北京大学数学系,有多年Python开发经验,曾用Python开发过多款有意思的软件。对机器学习、神经网络、贝叶斯算法有深入研究。
|