作品介绍

隐私计算


作者:陈凯     整理日期:2022-12-06 15:14:52

  适读人群 :本书是为计算机科学、隐私保护、大数据和人工智能相关专业的学生,以及对隐私计算感兴趣的从业者,从事隐私计算研究的研究人员、法律法规制定者和政府监管者编写的。无论是入门还是探究隐私计算,本书都可作为阅读资料的**本书。内容系统完整全面。呈现相对完整的隐私计算知识体系,系统阐述隐私计算关键技术,包括4大发展阶段,5大应用平台,9大落地实践案例。 理论应用价值兼备。系统讲解隐私计算的基础理论和关键技术,包括秘密共享、同态加密、不经意传输、混淆电路、差分隐私、可信执行环境和联邦学习。并介绍了基于隐私计算技术构建的五个前沿隐私计算平台,以及平台的效率问题和常见加速策略。 产业实践案例丰富。本书结合金融营销与风控、广告计费、广告推荐、数据查询、医疗、语音识别及政务等领域的产业应用案例,详细分析了相关技术的适用范围和落地方法,方便读者理解技术的优点和局限性,对实践者具有很高的参考价值。 全新法律法规解读。本书邀请观韬中茂律师事务所的资深律师,对新的中国数据保护法律进行了详细解读,方便读者了解中国新的数据保护制度。 顶级专家学者力荐。中国科学院院士梅宏倾情作序,中国工程院院士高文,中国工程院外籍院士、加拿大皇家科学院院士罗智泉,创新工场董事长兼CEO李开复联袂推荐。 全彩印刷设计精良。本书采用全彩印刷,精致排版设计,提供上乘阅读体验。
  在大数据和人工智能时代,如何在享受新技术带来的便利性的同时保护自己的隐私,是一个重要的问题。《隐私计算》系统讲解了隐私计算的基础技术和实践案例,全书共有11 章,按层次划分为三部分。**部分全面系统地阐述隐私加密计算技术,包括秘密共享、同态加密、不经意传输和混淆电路。第二部分介绍隐私保护计算技术,包括差分隐私、可信执行环境和联邦学习。第三部分介绍基于隐私计算技术构建的隐私计算平台和实践案例,隐私计算平台主要包括面向联邦学习的FATE 平台和加密数据库的CryptDB 系统等五个平台,以及隐私计算平台的效率问题和常见的加速策略;实践案例部分主要介绍包括金融营销与风控、广告计费、广告推荐、数据查询、医疗、语音识别及政务等领域的应用案例。此外,《隐私计算》还展望了隐私计算未来的研究和落地方向。在附录中介绍了当前新的中国数据保护法律概况。 《隐私计算》可供计算机科学、隐私保护、大数据和人工智能相关专业的学生,以及对隐私计算有兴趣的相关从业者阅读,也适合从事隐私保护相关研究的研究人员、法律法规制定者和政府监管部门阅读。





上一本:产品开发项目管理 下一本:知识图谱与认知智能

作家文集

下载说明
隐私计算的作者是陈凯,全书语言优美,行文流畅,内容丰富生动引人入胜。为表示对作者的支持,建议在阅读电子书的同时,购买纸质书。

更多好书