在统计方法中,分位数回归常用来反映解释变量对响应变量整个条件分布的异质影响,是探索客观规律的重要手段与方法之一。常用的统计软件都可进行分位数回归,但受到计算内存和运行时间的限制,以大样本与高维为典型特征的大规模数据分位数回归往往难以奏效。因此,本书将经典的分位数回归模型从中小规模数据扩展到大规模数据,研究大规模数据分位数回归方法,解决其建模过程中的技术难题,对于推广应用、揭示经济和社会的复杂模式等,具有重要的理论意义和实践价值。 在统计方法中,分位数回归常用来反映解释变量对响应变量整个条件分布的异质影响,是探索客观规律的重要手段与方法之一。常用的统计软件都可进行分位数回归,但受到计算内存和运行时间的限制,以大样本与高维为典型特征的大规模数据分位数回归往往难以奏效。因此,本书将经典的分位数回归模型从中小规模数据扩展到大规模数据,研究大规模数据分位数回归方法,解决其建模过程中的技术难题,对于推广应用、揭示经济和社会的复杂模式等,具有重要的理论意义和实践价值。
|