《数据化管理:洞悉零售及电子商务运营》讲述了两个年轻人在大公司销售、商品、电商、数据等部门工作的故事,通过大量案例深入浅出地讲解了数据意识和零售思维。作者将各种数据分析方法融入到具体的业务场景中,最终形成数据化管理模型,从而帮助企业提高运营管理能力。 《数据化管理:洞悉零售及电子商务运营》全部案例均基于Excel,每个人都能快速上手应用并落地。
作者简介 黄成明(@数据化管理):拥有15年的销售及数据分析经验,历经美国强生公司、妮维雅公司、雅芳公司和鼎盛时期的诺基亚公司。目前是数据化管理的咨询顾问和培训师。他独立研发了基于周销售权重指数的零售管理模型,可以有效地进行目标管理、销售预测、客流预估、促销评估、销售预警等。
目录: 第 1 章 什么是数据化管理 /17 1.1 “聪明”的销售人员 /17 1.2 数据化管理的概念 /20 1.3 数据化管理的意义 /21 1.4 数据化管理的四个层次 /22 1.4.1 业务指导管理 /22 1.4.2 营运分析管理 /22 1.4.3 经营策略管理 /22 1.4.4 战略规划管理 /22 1.5 数据化管理流程图 /23 1.5.1 分析需求 /23 1.5.2 收集数据 /23 1.5.3 整理数据 /23 1.5.4 分析数据 /24 1.5.5 数据可视化 /24 1.5.6 应用模板开发 /25 1.5.7 分析报告 /26 1.5.8 应用 /27 1.6 数据化管理应用模板 /27 第 2 章 寻找零售密码 /29 2.1 周权重指数 /30 2.1.1 寻找店铺零售规律 /31 2.1.2 周权重指数 /32 2.1.3 周权重指数的计算 /34 2.1.4 日权重指数的特殊处理 /36 2.2 周权重指数的应用 /37 2.2.1 判断零售店铺销售规律辅助营运 /38 2.2.2 分解日销售目标 /39 2.2.3 月度销售预测 /41 2.2.4 销售对比 /44 2.3 神奇的黄氏曲线——单位权重(销售)值曲线 /47 2.3.1 单位权重(销售)值曲线 /47 2.3.2 应用在销售追踪过程中 /47 2.3.3 特殊事件的量化处理 /50 2.3.4 促销活动的分析及评估 /52 2.3.5 新产品上市的分析及评估 /54 2.3.6 其他应用 /55 2.4 案例及应用——数据化排班 /56 第 3 章 销售中的数据化管理 /61 3.1 销售都是追踪出来 /62 3.1.1 没有目标管理就没有销售的最大化 /62 3.1.2 没有标准就没有追踪的依据 /63 3.1.3 如何用数据化追踪销售 /64 3.1.4 销售追踪注意事项 /68 3.2 常用的销售分析指标 /69 3.2.1 人货场是零售业基本的思维模式 /69 3.2.2 零售业常用的分析指标 /72 3.2.3 如何确定指标的重要性 /86 3.3 提高销售额的杜邦分析图 /87 3.3.1 路过人数 /89 3.3.2 进店率 /89 3.3.3 成交率 /89 3.3.4 平均零售价 /90 3.3.5 销售折扣 /90 3.3.6 连带率 /90 3.4 促销中的数据化管理 /92 3.4.1 影响冲动购买的因素有哪些 /92 3.4.2 零售业常用的促销方式 /93 3.4.3 促销活动的准备、执行和评估 /94 3.5 案例及应用 /97 第 4 章 商品中的数据化管理 /103 4.1 常用的商品分析指标 /103 4.1.1 商品分析的基本逻辑 /103 4.1.2 常用的商品分析指标 /104 4.1.3 伤不起的售罄率 /117 4.1.4 再谈如何确定指标间的重要性 /119 4.2 常用的商品分析方法 /120 4.2.1 商品的自然分类方法 /120 4.2.2 商品的销售分类方法 /122 4.2.3 商品的价格分析 /124 4.2.4 商品的定价策略 /130 4.3 商品的关联销售分析 /136 4.3.1 商品的关联程度分析 /136 4.3.2 购物篮分析 /139 4.3.3 提高商品关联度的方法 /141 4.4 商品的库存管理 /142 4.4.1 库存分析逻辑 /142 4.4.2 异常库存管理 /150 4.4.3 设置库存预警条件 /151 4.5 商品的利润管理 /152 4.5.1 谁在决定商品的利润 /153 4.5.2 商品的现值 /153 4.5.3 库存的现值分析法 /156 4.6 案例分享 /157 第 5 章 电子商务中的数据化管理 /164 5.1 数据分析是电商营运的指路明灯 /164 5.1.1 电子商务和传统零售数据分析的区别 /165 5.1.2 电商数据分析需要的数据 /166 5.1.3 电商数据来源及分析工具 /167 5.2 电商数据分析指标 /168 5.2.1 流量指标 /168 5.2.2 转化指标 /169 5.2.3 营运指标 /171 5.2.4 会员指标 /171 5.2.5 财务指标 /173 5.2.6 关键指标 /175 5.3 流量及会员数据分析 /177 5.3.1 流量及转化的漏斗图分析 /177 5.3.2 对比发现有质量的流量 /178 5.3.3 电商销售额诊断 /180 5.4 案例分析 /181 第 6 章 零售策略中的数据化管理 /184 6.1 渠道策略的数据化管理 /185 6.1.1 如何科学地将渠道分类 /185 6.1.2 渠道拓展分析 /191 6.1.3 渠道的管理指标 /197 6.2 会员策略的数据化管理 /198 6.2.1 会员数据分析 /199 6.2.2 会员价值分析 /203 6.2.3 会员的生命周期管理 /206 6.2.4 会员购买行为的研究 /209 6.3 竞争对手分析 /211 6.3.1 谁是你的竞争对手 /211 6.3.2 如何收集竞争对手的数据 /214 6.3.3 竞争对手的分析方法 /217 6.4 营运策略的数据化管理 /224 6.4.1 如何做销售预测 /224 6.4.2 如何制定年度销售目标 /230 6.5 案例分享 /235 6.5.1 整理思路 /236 6.5.2 界定问题 /237 6.5.3 收集数据 /238 6.5.4 分析数据 /241 第 7 章 必知必会的数据分析方法 /244 7.1 数据分析的立体化 /244 7.1.1 数据分析必须立体化 /244 7.1.2 三维分析之点-线-面 /245 7.1.3 三维分析之时间-对象-指标 /245 7.1.4 三维分析之人-货-场 /246 7.1.5 三维分析之广度-宽度-深度 /248 7.2 数据没有可对比性就没有数据分析 /251 7.2.1 被滥用的同比和环比 /252 7.2.2 伤不起的各种“率” /253 7.2.3 她真的是销售冠军吗 /257 7.3 常用的数据分析方法 /259 7.3.1 如何设定指标的权重 /260 7.3.2 经典的二八法则应用 /262 7.3.3 ABC分析方法 /264 7.3.4 排行榜分析方法 /265 7.3.5 你真的了解平均值吗 /267 7.4 数据展示也是一种分析方法 /269 7.4.1 Excel图表的展示逻辑 /270 7.4.2 不一样的雷达图 /271 7.4.3 清清爽爽的K线图 /273 7.4.4 高端大气的热力图 /275 7.4.5 四象限图的策略思维 /278 第 8 章 如何建立数据化管理模型 /280 8.1 数据化管理应用模板 /280 8.1.1 自定义区域 /281 8.1.2 数据源区域 /282 8.1.3 分析辅助区域 /283 8.1.4 业务预警区域 /283 8.1.5 业务分析区域 /284 8.1.6 报告展示区域 /286 8.2 搭建数据化管理模板必会的Excel十大技巧 /287 8.2.1 必须要掌握的54个函数 /287 8.2.2 数据透视表 /288 8.2.3 自动排名 /289 8.2.4 四象限图 /290 8.2.5 智能提醒 /291 8.2.6 PPT随Excel图表自动更新 /292 8.2.7 密码保护 /293 8.2.8 控件和VBA的使用 /295 8.2.9 名称管理器 /298 8.2.10 如何隐藏数据 /300 后记 /304 附录 测试你对数据敏感度的答案 /305
|